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ABSTRACT: The effect of magnetic field on the discotic nematic liquid crystalline polymers (LCPs) is analyzed with the extended Doi

theory, in which the molecular shape parameter (b) is defined at �1.0. The evolution equation for the probability function of the dis-

cotic nematic LCP molecules is solved without any closure approximations. The transition among flow-orientation modes, such as

tumbling, wagging, and aligning defined similar to the rodlike LCPs, is strongly affected by the magnetic fields. The new aligning

flow-orientation mode observed for the rodlike LCPs under magnetic fields also can be investigated in the lower shear rate region.

On the other hand, the effect of magnetic fields parallel to the x- and y-axis on the time-averaged first and second normal stress dif-

ferences ( �N�
1 ,

�N�
2 ) are also studied. It can be seen that the shear rate regions of the sign changes of �N�

1 ,
�N�
2 are completely contrary

to those conclusions achieved for the rodlike LCPs. In addition, the absolute values of �g� increase with the magnetic field strength in

the lower shear rate range owing to the new aligning flow-orientation mode. Finally, the flow-phase diagram versus b is also dis-

cussed. VC 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 000: 000–000, 2012
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INTRODUCTION

Nematic phase in liquid crystals (LCs) is the simplest meso-

phase in which an orientational order exists, but there is no

positional order. This simple mesophase can be formed by two

drastically different configurations: rodlike and discotic LCs.

The nematic phase of discotic LCs is quite similar to the one of

rodlike LCs. However, the optical feature of these two kinds of

LCs is different: the common rodlike LCs exhibit uniaxial posi-

tive birefringence, whereas the discotic LCs intrinsically possess

uniaxial negative birefringence, which is due to the average

degree of alignment of unit normals to the discs along the

director n [see Figure 1(b)]. Because of the enormous commer-

cial potential of the liquid crystalline polymer (LCP) products,

both rodlike and discotic LCPs attracted more attention since

the discovery of the liquid crystalline behavior. After the ultra-

high strength Kevlar fibers made of rodlike LCPs by Dupont

were developed in 1971, carbonaceous mesophases which can

form the discotic LCPs also found their practical use in the

spinning of high performance carbon fibers.1–3 The performance

of LCPs, such as tensile strength and modulus, strongly depend

on the orientation configuration of constitutive molecules. In

the process of the LCP products, an understanding of the rela-

tion between molecular orientation and the flow is useful to

obtain the desired performance.

For the last few decades, most of the hydrodynamical theories

formulated for flows of LC materials were based on rodlike

molecules.4–10 One of the major advances in the theoretical

LCP rheology was made by Doi8 in 1981, who extended the

theory for semidilute polymeric fluids to that for concentrated

rodlike polymeric fluids. For the simple shear, the exact solu-

tions of the Doi theory showed that at low shear rates, the ori-

entation distribution function displayed a time-periodic tum-

bling, followed by the steady-state or flow-aligning, where the

director became stationary at high shear rates.11 And in the

region of intermediate shear rates, another different dynamical

phenomenon that the director oscillated about a fixed angle

was predicted, called ‘‘wagging.’’12 In general, a phenomenolog-

ical molecular shape parameter b is introduced into Doi

theory, which has been pointed by Ericksen13 in 1960 that the

effect of reducing the aspect ratio can be quite significant,

such as from 1.0 to 0.8. This effect due to aspect ratio has

been explored in the Refs. 14 and 15 for a variety of

VC 2012 Wiley Periodicals, Inc.

WWW.MATERIALSVIEWS.COM WILEYONLINELIBRARY.COM/APP J. APPL. POLYM. SCI. 2012, DOI: 10.1002/APP.38268 1



mesoscopic closure approximations to the Doi theory. If the

infinite aspect ratio nematic liquid is tumbling, lowering as-

pect ratio will only enhance tumbling. However, a flow-aligned

infinite aspect ratio liquid is transformed by lowering aspect

ratio to either reduce the Leslie angle downward (toward the

flow axis) or cause a tumbling transition. Recently, Singh and

Rey16 used the TR theory10 to model homogeneous flows of

discotic LCPs by reversing the sign of b and showed some

promising results. The kinetic theory for spheroidal LCPs

developed in Ref. 17 aimed at establishing a unified theory for

rodlike and discotic LCPs, which can provide a rigorous justi-

fication for the convenient practice and relate the macroscopic

parameters to the microscopic ones.

The optimization and control of preferred orientation is practi-

cal importance because the mechanical and thermal properties

are affected by the degree of alignment and the preferred orien-

tation of discotic molecules. If one can freely control the molec-

ular orientation configuration, the processing optimization may

become much simpler. It is well known that the electric or

magnetic field imposed on the rodlike LCPs results in the

improvement of performance for LCP products.18,19 Some

experiments,20,21 such as the uses of surface effect and shear

flow, were made to obtain alignment phase of discotic LCs.

However, the shearing technique requires a special cell and the

use of surface effect restricts substrates used. The influence of a

magnetic field on the alignment was investigated in the discotic

nematic phase of a triphenylene derivative. The uniform align-

ment was achieved when a magnetic field of 5 T was applied

parallel to the cell surface during the cooling process.22 Also, by

application of a magnetic field, Shklyarevskiy et al.23 found that

high mesoscopic order can be introduced in thin films of a hex-

abenzocoronene-based discotic LC. Forest et al.24,25 gave a com-

prehensive study of magnetic field coupled to shear flow for any

aspect ratio. The results showed that any limit cycle in any pla-

nar flow would be arrested at a critical magnetic field strength

for a coplanar magnetic field, which presented the generality

and explicated predictions of solving this problem. This general-

ity was also illustrated by a variety of linear flows, such as any

kayaking, tumbling, and wagging limit cycle arrested at a critical

magnetic field strength. To study the dynamic behaviors of dis-

cotic LCPs molecular field, such as the director or stress as a

function of time, we will focus our attention on the effect of

magnetic fields on the flow-orientation, order parameter, and

shear stress of the discotic LCPs in this article. The numerical

solution technique is outlined in the Governing equation sec-

tion. The discussions and conclusions will be presented into the

Numerical calculation and Results and discussions sections,

respectively.

GOVERNING EQUATION

In this article, we study the microstructural dynamical response

of discotic nematic LCPs to a magnetic field. Based on the

extended Doi kinetic equation for discotic LCPs discussed by

Singh and Rey,16 the effect of magnetic field on the discotic

molecules also is considered, given by

@f

@t
¼ �Dr

@

@u
� @

@u
f þ f

@

@u

V uð Þ
kT

� �
� @

@u
� _ufð Þ; (1)

Here �Dr denotes the average rotational diffusivity depended on

the order parameter tensor S:

�Dr ¼ Ds 1� 3

2
S : S

� ��2

; (2)

where Ds is the rotational diffusivity of an isotropic state. The

order parameter tensor S, which is the second moment of the

orientation distribution f, is defined by the following equation:

S ¼
Z
juj¼1

u� I

3

� �
fdA; (3)

here I is a unit tensor. When the effect of the magnetic field on

the LCP molecules is taken into account, the mean field poten-

tial V(u) in eq. (1) can be described as,

V uð Þ ¼ � 3kTU

2
S : uu� l0Dv

2
u �Hð Þ2; (4)

where k (¼ 1.3806505 � 10�23 J/K) is the Boltzmann con-

stant, T the absolute temperature, and U the dimensionless

nematic potential intensity. l0 (¼ 4p � 10�7 H/m) is the

Figure 1. (a) Geometry and co-ordinate systems. (b) Definition of uni-

axial director n orientation of a discotic nematic LCP. The uniaxial

director n is the average orientation of the unit normals to the discotic

molecules.
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permeability of vacuum, H the vector of the magnetic field,

and Dv (¼ v|| � v?) the magnetic anisotropy. _u in eq. (1)

represents the rate of change of u by the macroscopic flow,

given by

_u ¼ W þ bAð Þ � u� u � W þ bAð Þ � uu; (5)

here W and A are the corresponding rate-of-strain and vorticity

tensors. And the molecular shape parameter, b, is related to the

aspect ratio, p, namely,

b ¼ p2 � 1

p2 þ 1
: (6)

b lies among b ¼ �1.0 for ideal flat discs, b ¼ 0 for spherical

molecules, and b ¼ 1.0 for infinitely thin rods.

NUMERICAL CALCULATION

Figure 1(a) defines the flow geometry, where x-axis is the flow

direction, y-axis is the direction of the velocity gradient, and

z-axis is coaxial with the vorticity axis. Figure 1(b) shows the

molecular arrangement in typical discotic LCPs, where the

shortest molecular dimension aligns along the direction to

capture the flow behavior of discotic LCPs.26 The material is

sheared with the shear rate of _c in the x–y plane, and the

rate-of-strain and vorticity tensors are given by,

A ¼ 1

2
_c

0 1 0

1 0 0

0 0 0

0
@

1
A; W ¼ 1

2
_c

0 1 0

�1 0 0

0 0 0

0
@

1
A: (7)

The orientation of a single molecule represented by a unit

vector u is characterized with an azimuthal angle / and a

polar angle h [see Figure 1(a)]. The orientation distribution

function f keeps symmetry with respect to the x–y plane,

when the director always remains in the shear plane. That

is,

f h;/; tð Þ ¼ f p� h;/; tð Þ; (8)

also, it should be mentioned here that as there is no distinction

between head and tale of the model rods, the function f must

has the point symmetry:

f h;/; tð Þ ¼ f p� h;pþ /; tð Þ: (9)

From above conditions for the distribution function f, the non-

zero components of the order parameter tensor S are:

S ¼
Sxx Sxy 0

Sxy Syy 0

0 0 Szz

2
4

3
5: (10)

After nondimensionalization using the time scale 1/Ds and the

magnetic force
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT=l0Dv

p
, eq. (1) for one-dimensional mag-

netic field (H ¼ (Hx, Hy,0)) becomes

@f

@t�
¼

�
1� 3

2
S : S

��2�
@2f

@h2
þ cot h

@f

@h
þ 1

sin2 h

@2f

@/2

�

þ 3U

�
1� 3

2
S : S

��2�
3f
�
Sxx sin

2 h cos2 /þ Syy sin
2 h sin2 /

þSzz cos
2 hþ Sxy sin

2 h sin 2/
�� 1

2

@f

@h
sin 2h

�
Sxx cos

2 /

þSyy sin
2 /� Szz þ Sxy sin 2/

�
þ 1

2

@f

@/

�
Sxx sin 2/� Syy sin 2/� 2Sxy cos 2/

��

þ
�
1� 3

2
S : S

��2�
2f
�
H�2

x

�
3 sin2 h cos2 /� 1

�

þH�2
y

�
3 sin2 h sin2 /� 1

�þ 3H�
x H

�
y sin 2/ sin2 h

	

� @f

@h

�
sin 2h

�
H�2

x cos2 /þH�2
y sin2 /þH�

x H
�
y sin 2/

�	

þ @f

@/

�
sin 2/

�
H�2

x �H�2
y

�� 2H�
x H

�
y cos 2/

	�

þ _c�


b

�
3

2
f sin2 h sin 2/� 1

4

@f

@h
sin 2h sin 2/

�

þ @f

@/

�
1� b cos 2/

�
=2

�
ð11Þ

where

_c� ¼ _c=Ds

H�
x ¼ Hx=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT=l0Dv

p
H�

y ¼ Hy=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT=l0Dv

p
t� ¼ tDs:

(12)

The superscripts * denote nondimensionalized variables and

parameters. The above equation is computed using the finite

difference method for spatial discretization and the Crank–

Nicolson method for time integration. Because of the condition

eqs. (8) and (9), the computation area for f can be restricted in

the region 0 � h � p/2 and �p/2 � / � p/2. Boundary condi-

tions for the function are:

@f 0;/; t�ð Þ=@h ¼ 0; (13a)

@f p=2;/; t�ð Þ=@h ¼ 0; (13b)

@f h;�p=2; t�ð Þ ¼ f h;p=2; t�ð Þ; (13c)

@f h;�p=2; t�ð Þ=@/ ¼ @f h;p=2; t�ð Þ=@/: (13d)

the normalization condition,

4

Z p=2

0

dh
Z p

0

d/f sin h ¼ 1: (14)

is also required. An initial profile of the function, f(h,/,t* ¼ 0), is

derived from the Boltzmann profile with the major orientation direc-

tion along the x-axis (flow direction). The time step and the spatial

mesh width are set to be Dt� ¼ 0:005= _c� and Dh ¼ D/ ¼ 3�.

RESULTS AND DISCUSSIONS

Computational parameters in eq. (11) are the dimensionless ne-

matic potential intensity U proportion to concentration of LCPs
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solutions, the dimensionless magnetic field strengths H�
x and

H�
y , and dimensionless shear rate _c�. To make easy to see the

effect of the magnetic fields on the order parameter and the

shear stress, the nematic potential intensity U is set to be 5,

which corresponds to the lowest order of the nematic state after

the isotropic-nematic phase transition happens. In the following

discussions, the computation results will be mainly organized in

terms of the major orientation angle, the scalar order parameter,

and the viscosity stress nondimensionalized by 3ckT, where c

denotes the number of discs in unit volume, defined by

tan 2/m ¼ 2Sxy

Sxx � Syy
; (15a)

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3

2
S : S

r
; (15b)

and

r�ab ¼ Sab � U Sal < ulub > �Slm < ulumuaub >
� �

; (15c)

here <…> stands for the average over the distribution

function.

The nondimensionalized first and second normal stress differen-

ces are given by

N�
1 ¼ r�xx � r�yy ; (16a)

N�
2 ¼ r�yy � r�zz : (16b)

Magnetic Fields Along the x-Axis

In this section, we deal with the case that the magnetic field is

parallel to the flow direction. Figure 2 shows the time evolu-

tions of the major orientation angle /m, scalar order parameter

S and the first and second normal stress differences N�
1, N

�
2 as a

function of strain c ¼ t� _c�ð Þ for _c� ¼ 1:0 and H�
x ¼ 0, 0.5 �

10�6, and 0.9 � 10�6. For H�
x ¼ 0, /m shows the typical tum-

bling behavior same with the rodlike nematic LCPs, where /m

periodically decreases with c. When the magnetic field is

imposed, for example H�
x ¼ 0.5 � 10�6, the decrease period

becomes longer. And once a critical magnetic field strength is

arrived, H�
x ¼ 0.9 � 10�6, /m no longer changes with time and

the system shows an aligning like behavior, which is called the

new aligning behavior defined in Ref. 18. The behaviors of S

reflect the behaviors of /m, and the steady value of S for H�
x ¼

0.9 � 10�6 is slightly higher than that at the equilibrium state.

When H�
x ¼ 0, 0.5 � 10�6 N�

1, N
�
2 periodically change with c in

which two peaks can be observed. As described at H�
x ¼ 0.9 �

10�6, a stable state of N�
1, N

�
2 is achieved caused by the new

aligning. Figure 3 shows the time evolutions of /m, S, and N�
1,

N�
2 as a function of strain c ¼ t� _c�ð Þ for _c� ¼ 3 and H�

x ¼ 0, 0.9

� 10�6, and 1.5 � 10�6. For H�
x ¼ 0, the system exhibits the

wagging behavior which oscillates in the �135� � /m � �45�

sector. As the magnetic field is imposed, for H�
x ¼ 0.9 � 10�6,

the period and the amplitude of the oscillatory behavior of /m

increase. Similar to the case for _c� ¼ 1, the system shows the

new aligning behavior above a certain critical H�
x . The periodi-

cally oscillates of N�
1, N

�
2 will increase when the magnetic field

strength is imposed at 0.9 � 10�6. Compared with the results

for _c� ¼ 1, stronger magnetic field is necessary for the stable

states, such as H�
x ¼ 1.5 � 10�6. Figure 4 is the time evolution

of /m, S, and N�
1, N�

2 as a function of strain c ¼ t� _c�ð Þ for

_c� ¼ 5, at which the system without the magnetic field shows

the normal aligning behavior. It can be seen that the normal

aligning modes can be observed near at �90� and the new

aligning mode near at �60�, which are the results of the com-

petition of the moments caused by the flow and the magnetic

fields. The damping behaviors of N�
1, N

�
2 can be seen at H�

x ¼ 0,

0.9 � 10�6. However, once the magnetic field strength is

beyond the critical value, the steady state results from the new

aligning also can be achieved.

The time-averaged first and second normal stress differences

( �N�
1 ,

�N�
2 ) are plotted as the function of the shear flow and the

magnetic field in Figure 5. When H�
x ¼ 0, the results, where the

negative �N�
1 is observed at lower and higher shear rate regions,

are exactly contrary with those conclusions obtained by Lar-

son12 and Marrucci and Maffettone11 for the rodlike LCPs.

When the magnetic fields are imposed, more complicated

changes are presented, where on increasing strength of the

Figure 2. Transient behaviors of /m, S, and N�
1, N

�
2 versus strain at _c� ¼

1 for various values of H�
x ¼ 0, 0.5 � 10�6, and 0.9 � 10�6 at b ¼ �1.0.
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magnetic fields the negative region of �N�
1 moves from the lower

shear rate to the higher shear rate region and is enlarged fur-

ther. Same with the rodlike LCPs, the new aligning also is

observed which spreads toward the higher shear rate and takes

over the whole tumbling and wagging regimes. The mode tran-

sition shear rate between the new aligning mode and the nor-

mal aligning mode also is identified in the figure when H�
x ¼ 2

� 10�6. The sign of �N�
2 becomes positive in all the shear

regions, once the effect caused by the shear flow is swamped by

the magnetic fields. Compared with Ref. 19 in which the rodlike

LCPs is affected by the magnetic fields, �N�
1 ,

�N�
2 are almost

opposite to the results when the magnetic fields are along the

y-axis.

Figure 6 shows the effect of magnetic fields on the time-aver-

aged generalized viscosity �g� ¼ �r�xy= _c
�

� 
. To capture the flow

characteristic of discotic nematic LCPs, we have to consider the

fact that the shortest molecular dimension aligns along the

director. Through comparing with the results of rodlike LCPs,19

the conclusion that the negative viscosity �g� is a mirror image

of that corresponding to rods has been made. In the low shear

region, the absolute values of �g� increase with the magnetic field

strength which can be expected if the phase formed by the dis-

cotic LCPs under magnetic fields is taken into account. How-

ever, all the values of �g� will be near to zero once the shear rate

is large enough.

Magnetic Fields Along the y-Axis

Figure 7 shows that the time-averaged �N�
1 is plotted as the func-

tion of the shear rate and magnetic field strength. It is well

known that in this case the magnetic field tends to rotate the

director, namely, the shortest axis of the discotic LCPs, into the

vorticity direction. In this case, the longest axis is arranged

along the shear flow. If the moment caused by the magnetic

fields is stronger than that caused by the shear rate, the values

of �N�
1 become negative in all the shear rate regions, such as, H�

y

¼ 2 � 10�6. The transition of phase among tumbling, wagging,

and aligning affected by the magnetic field also is indicated in

the figure. Figure 8 plots the ratio �N�
2 = �N

�
1 as a function of _c�

with the various magnetic field strength. The absolute ratio
�N�
2 = �N

�
1 increases with the increasing magnetic field strength.

From the ratio, �N�
2 is predicted to be negative in the middle

shear rate region.

Figure 3. Transient behaviors of /m, S, and N�
1, N

�
2 versus strain at _c� ¼

3 for various values of H�
x ¼ 0, 0.9 � 10�6, and 1.5 � 10�6 at b ¼ �1.0.

Figure 4. Transient behaviors of /m, S, and N�
1, N

�
2 versus strain at _c� ¼

5 for various values of H�
x ¼ 0, 0.9 � 10�6, and 2 � 10�6 at b ¼ �1.0.
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Flow-Phase Diagram

The effect of the magnetic field on the flow-orientation mode

transition is discussed in the Figure 9, where a flow-orientation

Figure 5. Effect of magnetic field on the time-average first and second

normal stress differences �N�
1 and �N�

2 with various H�
x at b ¼ �1.0.

Figure 6. Plot of the time-average generalized viscosity �g� versus shear

rate with various H�
x at b ¼ �1.0.

Figure 7. Effect of magnetic fields on �N�
1 with various H�

y at b ¼ �1.0.

Figure 8. Ratio �N�
2 = �N

�
1 of the first to the second normal stress differen-

ces as a function _c� with various H�
y at b ¼ �1.0.

Figure 9. Critical shear rates as a function of magnetic field at b ¼ �1.0.
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mode diagram spanned by the shear rate _c� and the magnetic

field strength H�
x . For the case that only the shear flow is

applied to the system (i.e., H�
x ¼ 0), the tumbling, wagging, and

aligning modes appear depending on the shear rate. At H�
x ¼

0.9 � 10�6, the new aligning mode regime emerges at low shear

rate, erodes the tumbling regime with the increase of H�
x , and

finally the tumbling regime disappears at H�
x ¼ 1.2 � 10�6. The

wagging mode regime also disappears, when H�
x is increased up

to 1.7 � 10�6. A line at H�
x ¼ 1.7 � 10�6 represents the mode

transition shear rate between the new aligning mode and the

normal aligning mode. It is expected that the transition shear

rate becomes higher if H�
x is increased furthermore. To show the

effect of b on the phase diagram, the flow-orientation mode

transition versus b is investigated in Figure 10, when the mag-

netic field strength is zero. It is found that the regions of tum-

bling and wagging will be enlarged with the increasing b, for
example, b ¼ �0.9. It is expected that similar results will be

achieved when the magnetic field is applied to the y-axis.

CONCLUSIONS

In this article, the dynamic behavior of discotic nematic LCPs is

investigated when the magnetic field is applied on the flow. The

extended Doi equation for discotic LCPs is calculated without

using any closure approximation. When only the shear rate is

imposed, the similarity with the various regimes of rodlike

LCPs in the shear flow, which is in good agreement with the

conclusions presented by Farhoudi and Rey,27 is obtained. Due

to the moment caused by the magnetic field stronger than that

caused by the shear flow the new aligning state defined in the

Ref. 18 also is found at low shear rate region. The sign changes

of the time-averaged �N�
1 and �N�

2 are completely opposite with

those results obtained for rodlike LCPs by the Refs. 18 and 19.

In addition, as the mirror images of rodlike LCPs the values of

�g� are negative in the entire shear rate regions. It may be re-

sponsible by the shortest major axis of discotic LCPs molecules

arranged along the director. Finally, we also predict the phase

diagram among tumbling, wagging, aligning, and new aligning

versus the magnetic fields at b ¼ �1.0. The effect of molecular

shape on the phase transition also is discussed as the results

obtained by the simulation are suited to the infinite discotic ne-

matic LCPs. Besides, if we consider that at the room tempera-

ture, the magnetic field strength of 1.0 � 10�6 is imposed on

HBC-PhC12, a discotic liquid-crystalline semiconductor with Dv
¼ 4.9 � 10�9 m3/mol, the real magnetic field strength will be

about 0.643 T which can be got in the laboratory.

To illustrate the effect of the moments on the final state of the

discotic LCPs, Figure 11 presents the moments and deformation

caused by the shear flow and the magnetic field along the x-

and y-axis, respectively. From the previous results of Farhoudi

and Rey27 and Takserman-Krozer and Ziabicki,28 it follows that

when the director of a discotic LCPs is oriented along an exten-

sion direction, the degree of S decreases, but it increases when

orientated along a compression director [shown in Figure

11(a)]. As it can be seen from Figure 11(b,c), the moments

caused by the magnetic fields always rotate the director along

their direction. The deformation caused by the moments also is

shown in the figure. The result of competition between the

moments caused by the shear flow and the magnetic fields will

decide the final state of discotic LCPs.

Through this computation many interesting results, which are

almost reversed to those obtained from rodlike LCPs, such as,

the shear stress and the generalized viscosity, are presented. If

we can control the strength and direction of the magnetic fields

freely, the expected performance of discotic LCPs will be

achieved.

Figure 10. Critical shear rates as a function of b at H�
x ¼ 0.

Figure 11. (a) Torque map and deformation for a discotic phase, which is

affected only by the shear flow along the x-axis. (b) and (c) Torque map

and deformation caused the magnetic fields imposed along the x- and y-

axis, respectively.
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